

PROVISIONS FOR GREATER REUSE OF STEEL STRUCTURES

Reuse scenarios

	In-situ	Same site		Different site	
		Same	Different	Same	Different
		configuration	configuration	configuration	configuration
Entire primary	А	В	c	D	Е
structure	A	D	Ľ	U	E .
Elements of					
the primary	N/A	N/A	F	N/A	G
structure					
Individual	51/0	51/0		51/0	
elements	N/A	N/A	Н	N/A	I I

Type of product:

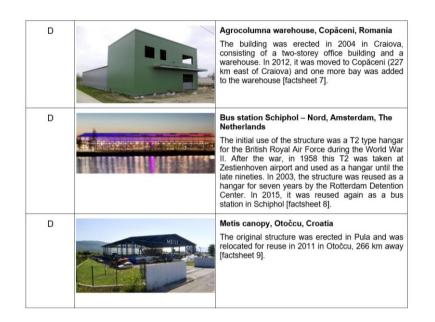
- The entire primary structure;
- Elements of the primary structure, e.g. trusses or 2D portal frames;
- Individual structural elements, e.g. the column or rafter.

Location:

- Reuse in-situ, i.e. the primary structure is retained and not deconstructed;
- Reuse on the same site, i.e. the primary structure is deconstructed and re-erected either in the same configuration and/or same or different location;
- Reuse on a different site.

The reuse of reclaimed steel is limited to:

- Steelwork erected after 1970;
- Steelwork which has not been subject to fatigue, e.g. not reclaimed from bridges;
- Steelwork from structures which have not experienced extreme loads;
- Steelwork which has not been subject to significant strains, e.g. plastic hinges;
- Steelwork without significant loss of sections' dimensions due to corrosion;
- Steelwork which has not been exposed to high temperature.


Scenario	Image	Brief description
G		NTS building, Thirsk, UK The original order for the building was cancelled in 2008 and the elements were stored. The new building was erected in 2017 by reusing a quarter of the steelwork of the original building [factsheet 1].
E		SEGRO warehouse, Slough, UK The structure was built in 2000 and relocated in a different layout at a new location in 2015 [factsheet 2].
A		HIDROTIM office, Timisoara, Romania The building was erected in the 1960s as a single storey industrial hall of steel structural elements with crane and converted into a five-storey office building in 2004 [factsheet 3].

Presentation of the case studies

https://www.steelconstruct.com/eu-projects/progress/case-studies/

A	RWTH seminar building, Aachen, Germany Following the closure of the RWTH heat and power plant in the 1990s, the decision was made to transform it into a seminar building by adapting the structure to meet the new functional requirements [factsheet 4].
A	UPT Steel Structures Laboratory, Timisoara, Romania The structure was erected in 1959, consisting of truss elements. Part of the structure was severely damaged in 2017 by a storm. As the structure was designed more than 50 years ago, it needs to be upgraded to fulfil the current codes, operating with higher climatic (snow and wind) and seismic loading than the codes at the time of design [factsheet 5].
E	MEXX DAY hall, Timisoara, Romania The structure was designed in 2008 as a <i>standard</i> <i>kit</i> to be adapted for different locations and applications. It was erected in 2009 and relocated for reuse in 2017 [factsheet 6].

https://www.steelconstruct.com/eu-projects/progress/case-studies/

https://www.steelconstruct.com/eu-projects /progress/case-studies/

7

D	S-Market, Urjala, Finland The original structure was erected in 1980s in Tampere and was relocated for reuse in 209 in Urjala, 60 km away [factsheet 10].
G	Fabrication plant, Wuppertal, Germany The production company has two fabrication sites. Due to growth over the years, this hall was planned to be cleared and populated by modern fabrication buildings afterwards. The owner, however, decided to reuse the original historical steel trusses from the early 1920s [factsheet 11].
G	Steel industrial kit hall for multiple locations An existing standard kit structure was used to construct buildings in different locations in Romania between 2008 and 2010. Recently, in 2020, a new complex of buildings reused the elements of one of the existing standard kits [factsheet 12].

https://www.steelconstruct.com/eu-projects /progress/case-studies/

Case A: 5 Case D: 4 Case E: 2 Case G: 3

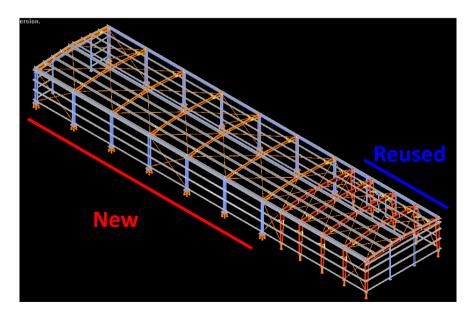
	In-situ	Same site		Different site	
		Same configuration	Different configuration	Same configuration	Different configuration
Entire primary structure	А	B1	С	D	E
Elements of the primary structure	N/A ²	N/A	F	N/A	G
Individual elements	N/A	N/A	н	N/A	I

https://www.steelconstruct.com/eu-projects /progress/case-studies/

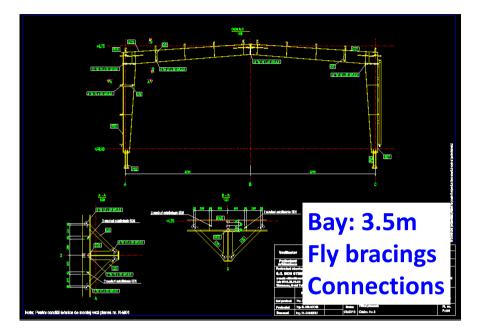
9

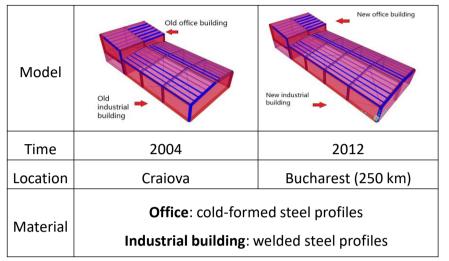
- 1) Reuse of the elements of the primary structure Different site / different configuration
 - area of Sibiu / production hall
 - 12m span

Reused New


- existing frames built in 1972 (Germany) / reuse in 2015

 change of location (Germany to Romania)
⇒ new loading conditions
evolution of design codes (1972 to 2015) (snow, wind, seismic)


no information about the existing structure



<u><u></u></u>	Same layout	Different layout Modification/adaptation can be needed due to different individua member loading		
	Modification/adaptation	ated reuse can be needed due to different d regulatory requirements.	In-situ reuse	
Frames	(A) Deconstruction and re-		tegrated into the new building layout (D) Reuse of individual elements cut from the frame (e.g. sections) in the new building on the same site	
Secondary structure Envelope	assembly on a new site.	(E) Reuse of individual elements on different site(s)	(F) Deconstruction and reuse of elements in a different configuration	

Degree of reuse ⇒ Main frames ⇒ 100%

2) Reuse of the entire structure *Different site / same configuration*

15

 change of location (Craiova to Bucharest)
⇒ new loading conditions (snow, wind, seismic)
evolution of design codes (2004 to 2012)

COMPARISON OF LOADS (old vs. new code for industrial building)

	Characteristic Value (kN/m2)			ULS (kN/m2)		DATE
Load (Design code)		OLD	NEW	OLD	NEW	RATE
Permanent load	Cladding (roof and walls)	0.250	0.250	0.275	0.338	18.5%
(STAS 10101-1/78) (SR EN 1991-1-1)	Technological loadings	0.150	0.150	0.165	0.203	18.5%
Snow (STAS 10101/21-92 STAS 10101/0A-77) (CR 1-1-3/2012)	uniform load	1.500	1.600	3.195	2.400	-33.1%
	drifted load	3.000	2.900	6.390	4.350	-46.9%
Wind (STAS 10101/20-90) (CR1-1-4/2012)	transversal	0.704	0.420	0.845	0.630	-34.1%
	longitudinal	0.704	0.560	0.845	0.840	-0.6%

17

COMPARISON OF SEISMIC LOADING

Seismic (P100-92)	Parameters	OLD	NEW	RATE
	Design ground of acceleration	a _g =0.20g	a _g =0.30g	50.0%
	Amplification coefficient	β 0=2.5	β 0=2.5	0.0%
(P100-2013)	Behavior factor	q=1	q=1	0.0%
	Upper limit of the period of the constant spectral acceleration branch	Tc=1.5	Tc=1.6	-

		P	ROGRESS
	Old Project	New Project	
Office			
	s	trengthening of intermediate fra	me
Weight	6436.3kg	6965.58kg	
Industrial			
Weight	8799.67kg	11561.7kg bracing	n of the roof system and n of a new bay

	Same layout	Different layout Modification/adaptation can be needed due to different individ member loading		
	Modification/adaptation	ated reuse can be needed due to different d regulatory requirements.	In-situ reuse	
Frames	(A) Deconstruction and re-		egrated into the new building layout (D) Reuse of individual elements cut from the frame (e.g. sections) in the new building on the same site	
Secondary structure Envelope	assembly on a new site.	(E) Reuse of individual elements on different site(s)	(F) Deconstruction and reuse of elements in a different configuration	

Degree of reuse ⇒ whole structure ⇒ 100% +

strengthening of <u>office</u>'s intermediate frame <u>industrial</u>: change of the roof bracing system and addition of a new bay

3) Reuse of the entire primary structure **PROGRESS** *Different site / same configuration*

- area of Timisoara (approx. 60 km)
- 2x35m span
- 84m (14x6m) length
- built in 2008 / reuse in 2017-2018

PROGRESS PROVISIONS FOR GREATER REUSE OF STEEL STRUCTURES

History:

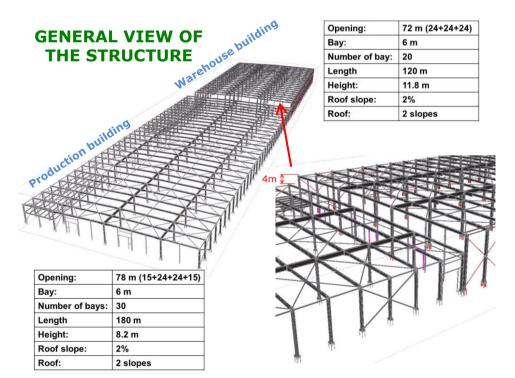
- designed in 2008 as a Standard Kit to be adapted for different locations in Romania (low to moderate climatic/seismic conditions) and applications (production, warehouses etc.);
- executed according the Standard Kit design and the mainframe erected in a 30 Km distance area from Timisoara (2009), but never completed;
- project adapted for a "Pasta fabrication" plant, only half-span of the hall intended to be used (2012) not realized;
- actually, a new owner prepare the exiting structure, using the whole hall, for a Cereals Storage Unit: some functional intervention compared with initial kit appears i.e. a partial mezzanine over two bays for offices and laboratories.

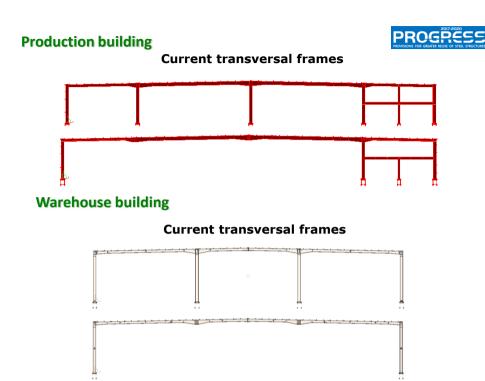
Necessary interventions for reusing the structure:

- the actual design codes wind, snow and earthquake have been changed (higher load intensities) compared with initial 2008 design;
- the mezzanine structure has to be inserted in the existing structure;
- consolidations of some structural components were necessary;
- bracing system needs for revision and involve some modifications;
- fire protection requirements for cereals closed storage warehouse need to be ensured.

25

	Same layout	Different layout Modification/adaptation can be needed due to different individua member loading elocated reuse ion can be needed due to different s and regulatory requirements.		
	Modification/adaptation of			
Frames	(A) Deconstruction and re-		egrated into the new building layout (D) Reuse of individual elements cut from the frame (e.g. sections) in the new building on the same site	
Secondary structure Envelope	assembly on a new site.	(E) Reuse of individual elements on different site(s)	(F) Deconstruction and reuse of elements in a different configuration	


Degree of reuse ⇒ main structure ⇒ 100% + additional components



4) "Reuse" of the entire structure In-situ / same configuration

Name: Beverage Can Plant in Bucharest, Romania Year of design: 2004 Production started in: 2005

Technical evaluation

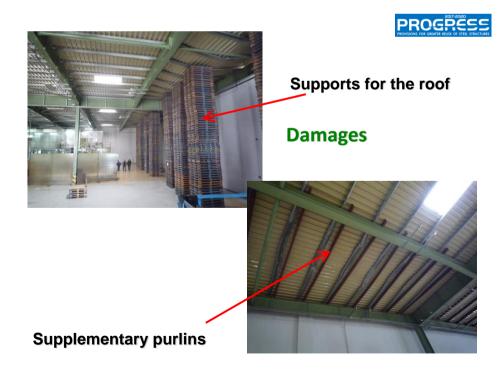
- structural evaluation according with the new technical regulations, necessary for insurance companies (planned);

coincide with

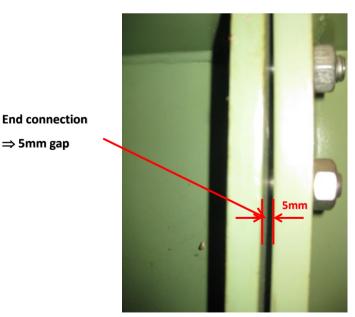
- in February 2010, the structure was affected by strong snow falls and strong winds, producing snow drifts (accumulation up to 4.0m of snow);

 \Rightarrow Very large deformations of the roof, purlins and roof panels severely damaged \Rightarrow Structural collapse prevented.

- Purlins will be replaced
 - Denote will be replaced
 - Panels will be replaced or strengthened
 - Local strengthening at main girders



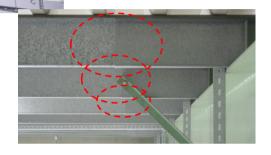
Twisting of the beam from the gable frame



PROGRESS

35

Technical deficiencies:


36

 \Rightarrow 5mm gap

Technical deficiencies:

Lack of bolts which connect purlins at the end of overlaps

PROGRESS

37

Technical deficiencies:

Actions to be done

Based on a visual and non-destructive inspection, followed by structural evaluation according with the new technical regulations:

 \Rightarrow Damage identification: critical zones, members, connections

- \Rightarrow Repairing of structure due to accidental snow load;
- \Rightarrow Structural upgrade of primary and secondary structure.

39

The Non-destructive inspection

- Detailed verification of welds and bolts of the beam-tocolumn connections;

- Ultrasonic investigation of cracks initiation;

- Checking of the lengths of bolts core;

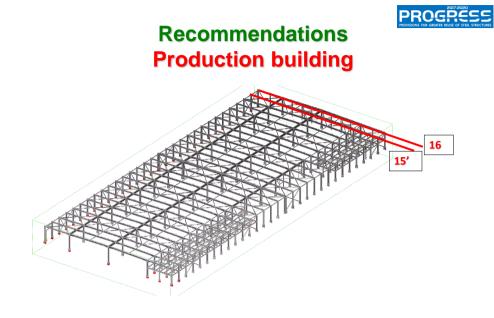
- Special attention will be paid to the first two rows of bolts placed on the tensioned side of the connection (the top side)

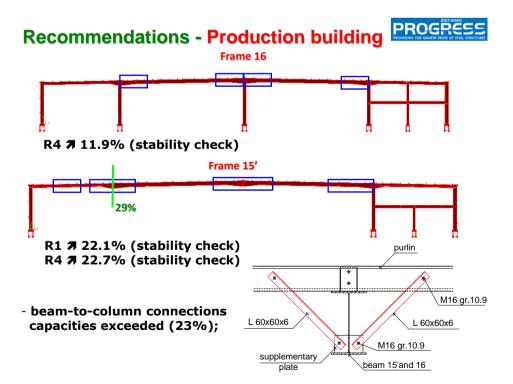
- Random investigation of the welded connection along the columns.

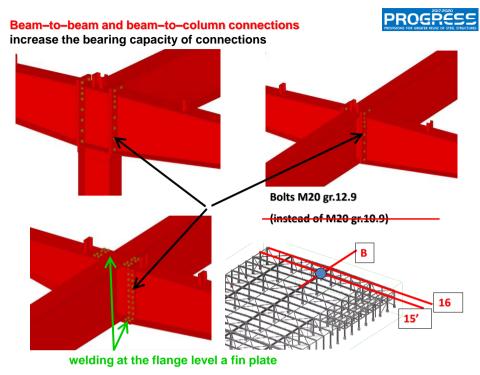
The main non-destructive methods used:

- ✓ visual inspection;
- ✓ magnetic particle inspection;
- Iiquid penetration inspection;
- ✓ ultrasonic inspection.

The Non-destructive inspection

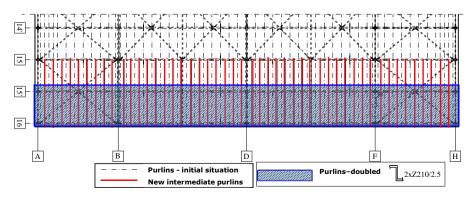





Load evaluation - Production building Differences 2004 vs. 2010

Combination	Loads 2004 [kN/m ²]	Loads 2010 [kN/m²]	2010 / 2004
C1 – curent (uniform snow)	1.1P + 1.9Z = 1.1·0.55 + 1.9·1.2 = 2.885	1.35P + 1.5Z = 1.35·0.55 + 1.5·1.6 = 3.143	8.9%
C1 – drifted snow	1.1P + 1.9Z = 1.1·0.55 + 1.9·2.4 = 5.165	1.35P + 1.5Z = 1.35·0.55 + 1.5·7.0 = 11.243	117.7%
Masses for earthquake combinations	P + 0.3Z = 0.55 + 0.3·1.2 = 0.91	P + 0.4Z = 0.55 + 0.4·1.6 = 1.19	30.8%
Wind	Partial factor = 1.2 $g_v = 0.55 kN/m^2$	Partial factor = 1.5 $g_v = 0.5kN/m^2$	13.6%

Snow drift is particularly very dangerous on very large roofs !!!!



Secondary structure – Purlins Strengthening solutions

The capacities of purlins and corrugated sheets, between axes 15'-16, are not on the safety range both at ULS and SLS

Increase the capacity of roof structure (bays 15-15' and 15'-16) :

• To introduce intermediate purlins Z210/2.5 between the existing ones for the first two bays and to double ones in the first bay (2xZ210/2.5)

Comments

- 1. By applying the repairing and strengthening solutions the initial capacity of both main and secondary structures has been recovered and increased in the regions were this was necessary.
- 2. The initial design lifetime of the structures can be considered after these interventions to be unaffected.
- 3. It is important to underlined the intervention can be done without interrupting the current activities inside the buildings.

51

General conclusions

- The case studies proved the reuse of existing steel structure is feasible;
- In most of the case studies the entire primary structure was reused (degree of reutilization 80-100%);
- The dismantling process is easier in the case of structures using bolted connections;
- The reused steel structures need to be strengthened by the addition or change of some structural components;
- The reuse process is easier when the original project and material certificates are available;
- Information about the loading history, interventions, any possible incident in the building/area (fire, earthquakes, ...) is important to be recorded.