

ECCS Academy's

four-session webinar on « Life-cycle driven design of steel structures for reduced embodied carbon »

By Alper Kanyilmaz

Alper Kanyilmaz is an <u>assistant professor</u> in the Department of Architecture, Built Environment and Construction Engineering of <u>Politecnico di Milano</u> in Italy. He is an <u>Expert Advisor</u> for the European Commission Technical group "Steel Applications for New Markets" (Mandate 2023-2028, future low emission industries). Some of his recent works include "<u>How does conceptual design impact the cost and carbon footprint of structures</u>?, <u>"Reuse of Steel in the Construction Industry: Challenges and Opportunities</u>" and "<u>A genetic algorithm tool for conceptual structural design with cost and embodied carbon optimization</u>". Dr. Kanyilmaz has been the principal investigator of 4 EU-projects with a €10 million total budget, and over 40 international partners. He transfers his research experience to the civil engineering and architecture students (300/year) in terms of teaching, MSc and PhD thesis supervision.

OBJECTIVE

This webinar provides a comprehensive overview of strategies, theoretical framework, and methods to reduce embodied carbon in steel construction. The webinar includes hands-on exercises, real-world examples, and interactive discussions to deepen the understanding of the topic. At the end of the webinar, participants will be able to calculate embodied carbon of a steel structure during the conceptual design stage, understand techniques and methods for reducing embodied carbon emissions, and analyze real-world case studies of mono and multi-storey steel structures.

Life-cycle driven design of steel structures for reduced embodied carbon

Webinar PROGRAMME

Date	<u>Title</u>	<u>Content</u>
Session 1	Introduction, life-cycle driven steel structures	- Welcome, Introduction, contents, learning outcomes
23/01/2024		- Challenges and opportunities for the steel community during the climate crisis
10:30-12:30		- Definition of life-cycle stages of a steel structure:
		 Product stage "raw materials" (A1)
		 Product stage "transport" (A2) and "manufacturing" (A3), construction stage "transport" (A4) and "installation" (A5)
		• End-of-life stages (C1, C2, C3, C4)
		- Q&A
Session 2	Conceptual design of life-	- How to calculate the embodied carbon of a steel structure?
25/01/2024	cycle driven steel structures	 How to reduce the embodied and operational carbon by means of structural design?
10:30-12:30		- Balancing the cost efficiency and embodied carbon reduction in steel structures.
		- Q&A
Session 3 30/01/2024 10:30-12:30	Embodied carbon impact of different steel building design options	 Sensitivity studies (warehouse, 3-story residential, 9 storey office building) comparing the embodied carbon impact of steel buildings in terms of: span length, number of stories, slab types (e.g. composite), lateral resistant systems, material type (e.g. high strength steel, low carbon steel), different databases and EPDs.
		 Interactive exercise for attendees to compare different building structures and analyze their embodied carbon (an excel sheet or an open access LCA tool will be shared with attendees).
		- Q&A
structures	Circular economy of steel structures, case studies	 Circular economy in steel structures (reuse, recovery and recycling potential)
01/02/2024		 Presentation of real-world examples of low-carbon steel structures.
10:30-12:30		- An interactive exercise for attendees to practice the calculation of embodied carbon of a steel structure.
		- Q&A