ECCS course « Fatigue Design Of Steel And Composite Structures »

Speakers:
Prof. Luis Borges, University of Coimbra, Portugal and Structurame, Geneva, Switzerland
Prof. Johan Maljaars, TU Eindhoven and TNO Delft, The Netherlands
Prof. Alain Nussbaumer, EPFL, Lausanne, Switzerland

<table>
<thead>
<tr>
<th>Date</th>
<th>Topic</th>
<th>Content</th>
<th>Comment and possible exercises</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAY 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 10-11AM | Introduction | - Content, objectives
- Logic of the book and of the lectures
- Structures at risk, examples of cracking | Must follow ECCS manual logic, at least for some regrouping of topics.
Inclusion of design examples within lectures |
| 11AM-1PM | Basis of fatigue design | - Concept of S-N curves, main parameters
- S-N curves: experimental determination, definitions of stress range and nb of cycles
- Terminology (in relation to Eurocodes)
- Variable amplitude, damage sum and equivalent damage concept | Introduce main concepts to put all participants at same min. level of understanding. |
| 2-4PM | Basis of fatigue design (cont.) | - Variable amplitude, damage sum and equivalent damage concept (cont.)
- Verification methods (with stress ranges, with nb. of cycles, with damage sum) | Exo damage sum calculation |
| 4-6PM | Codes of practice | - Different existing codes: Eurocodes, IIW, DNV, …
- Separation between action effects and resistance
- Application and limitation range: materials, corrosion
- Fabrication and quality assurance, EXC classes | Show where information can be found, also outside of Eurocodes, similarities between all codes.
Sensitization wrt fabrication (EN 1090-2) |
| DAY 2 | | | |
| 9AM -1PM | Actions and action effects | - Fatigue loads, fatigue load models (general)
- Road bridges load models (FLM1 to FLMS), railroad models (UIC 71, …)
- Service life, new vs existing bridges
- Damage equivalent factors, « span » or critical length, simultaneity (multiples charges)
- Combination road and railway traffic | Go beyond strict application of Eurocodes, consider practical questions often asked |
| 2 – 6PM | Determination of stresses and stress ranges | - Calculation of stresses: nominal, modified nominal, geometric
- Calculation of stress ranges: in bolted, welded connections, multiaxial cases
- In steel-concrete composite bridges | Exo determination of stress in bolted detail, in welded detail |
<table>
<thead>
<tr>
<th>AM - 1PM</th>
<th>Fatigue strength and detail categories</th>
<th>Safety and design methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Catalogue of construction details</td>
<td>- Steel quality choice: link between fatigue and brittle fracture (EN 1993-1-10)</td>
</tr>
<tr>
<td></td>
<td>- Classification by identification, by analogy</td>
<td>- Design methods: safe life, damage tolerant</td>
</tr>
<tr>
<td></td>
<td>- Fatigue strength modifications: size effect, mean stress and residual stresses,</td>
<td>- Partial factors for fatigue determination</td>
</tr>
<tr>
<td></td>
<td>- Hot spot stress method for fatigue design</td>
<td>- Evolution of reliability index during life wrt fatigue, influence of inspections, inspection interval determination</td>
</tr>
<tr>
<td></td>
<td>- Special details: orthotropic plates, tension elements (EN1993-1-11), reinforcing steel (EN1992-2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 5PM</td>
<td></td>
<td>Exo verification of a detail in a bridge</td>
</tr>
</tbody>
</table>

Exo detail classification

Exo verification of a detail in a bridge